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1. Introduction to Post-Stall Aerodynamics

Fighter aircraft have evolved for decades toward high speeds and

high wing loadings. Advances in air-to-air weapons are bringing that

line of evolution to a halt, and the advantage is passing to fighter

with lower wing loadings and great agility. The new design direction is

apparent in the F-16XL shown in figure 1.1. The Rockwell model in

figure 1.2 displays further concessions to maneuverability.

Herbst (1980) has introduced the concept of "supermaneuverability"

to characterize the design of future fighters. Supermaneuverability has

two aspects: decoupling of orientation from flight path to allow the

aircraft to function as a rotating gun platform, and flight at angles of

attack far beyond the limits of stall.

Herbst uses simulated fighter engagements to assess the merits of

post-stall (PST) maneuvers. Figure 1.3 shows time histories of speed V

and angle of attack a for a PST fighter engaging a normal adversary.

The engagement begins with the fighters approaching each other at a

closing speed of 200 m/sec. The PST fighter executes a 1800 turn at an

of 900, broadside to his flight path. His engine thrust balances

centrifugal force as his flight speed drops to 20 m/sec. Realigning his

thrust with his new flight path, he accelerates up the flight path of

his hapless adversary.

Flight at such large angles introduces phenomena outside the

boundaries of traditional aerodynamics. Some of those phenomena are

evident in figure 1.4:

* Flow separates all around the planform edges. This produces the

bag-shaped vortex sheet shown in cross section in figure 1.4.

Page 1
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" Viscous effects are unimportant; a consequence of the violent

and unambiguous separation on all salient edges of the planform.

• Pressure force is normal to the planform owing to a complete

loss of leading-edge suction.

" The vortex sheet shed from the aircraft is strong, with a

velocity jump comparable to the speed V of the aircraft.

* Shed vorticity interacts strongly with the aircraft, probably

creating "vortex lift" like vorticity shed from leading edges of

delta wings.

" The vorticity around the aircraft is nonsteady. Kelvin-

Helmholtz instability of the vortex sheet precludes 'he

attainment of a steady Helmholtz (free-streamline) flow, with

dead air inside.

The phenomena above are beyond the reach of aerodynamic theories

predicated upon quasi-steady flow or small perturbations. Numerical

methods, as described here, almost certainly are required to handle the

nonsteady, nonlinear vortex flow surrounding a PST aircraft and to

predict the resulting aerodynamic forces.

Page 6
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2. Theoretical Foundations

a. Theorems

Our study of post-stall aerodynamics begins with the Euler

equations for inviscid incompressible flow:

au)(z + u v p+ = -, (2.1)

V u 0 (2.2)

In these equations p is density, p is pressure, u is velocity, and

f is a force per unit volume exerted on the fluid by some external

agency. The continuity equation (2.2) presumes that p is constant,

an adequate approximation for low-speed maneuvers though not for

transonic flight. The assumption of inviscid flow is warranted only if

we can devise side conditions that accurately represent the conversion

of boundary-layer vorticity into free vorticity at planform edges, a

matter discussed in part (c) of this chapter.

Equations (2.1) and (2.2) apply to fluid outside the aircraft

surface, on which normal velocity boundary conditions are imposed.

Conceptually and computationally, it is often convenient to regard the

fluid as filling all space, with (2.1) and (2.2) applying everywhere,

and with the aircraft surface represented by some distribution of

singularities, sources and bound vortex sheets being popular choices.

Completely equivalent to a vortex sheet is a dipole sheet, which is a

volumetric force concentrated on the surface of the body and distributed

over the surface so as to enforce the normal velocity boundary

condition. Such a representation is achieved by writing f as

f A tp 6(n) T , (2.3)

Page 7
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where Ap is the pressure jump across the dipole sheet, 6(n) is a

delta function of the normal coordinate n, and hn is the unit outward

normal vector. The pressure jump Ap is a function of time and of two

surface coordinates and is tailored to insure that

u • = vn , (2.4)

where vn is the local normal component of boundary velocity. With

this representation, equations (2.1) and (2.2) apply throughout a

hypothetical unbounded fluid pervading the aircraft body.

Recall that f is a volumetric force exerted by an external agency

(the aircraft) on the fluid. the net force exerted by the fluid on the

aircraft is therefore given by the volume integral

F - ff dV , (2.5)

V

where the region of integration V extends over all space. A similar

formula provides the net moment exerted by the fluid on the aircraft:

M- - fxx dV . (2.6)

V

The dipole representation (2.3) allows an immediate evaluation of F

and M without a need for computing pressure.

There is no simple integral relation between F or M and u,

because u does not fall toward zero fast enough to permit a proper

evaluation of integrals like

ig (
: " Page 8



Poseidon Research Report No. 81

f dV

V

There are, however, simple relations of F and M to vorticity w, the

curl of the velocity field:

= V x u . (2.7)

Vorticity w is a complete flow representation when u is divergence

free. Velocity may then be written as the curl of a vector potential ,

u V x , (2.8)

with

2 -W (2.9)

Given w, one solves the Poisson equation (2.9) for 2, from which

follows by (2.8). Of course w includes both actual "free" vorticity

4F in the fluid, and "bound" vorticity 8b associated with the dipole

sheet representing the body:

-w = .wb + Wf . (2.10)

4b is the concentrated vortex sheet that would appear in a vortex-ppnel

code.

Vorticity evolves according to an equation obtained by taking the

curl of (2.1):

-Z +u• -W Vu = V x g (2.11)

at

Page 9



Poseidon Research Report No. 81

where

g = f/p . (2.12)

We can derive a relation between F and x x w by taking the cross-

product of x with (2.11) and integrating over all space, using the

facts that w and g are zero outside some finite region. The net

moment M bears a corresponding relation wit x x x x 2. Appendix A

shows how the integral relationships are derived.

The force and moment theorems must be derived separately for two

and three-dimensional flows, because a two-dimensional vorticity field

is unbounded in the third dimension, which changes the convergence
properties of integrals. A two-dimensional field of vorticity aligned

with the z-axis has tne form

W W(x, y, t) ez (2.13)

Net force per unit length in the z-direction has the form

F P- x x (wz) dA , (2.14)
dtf

A

where the integration extends over the full (x, y) plane, or at least

over every part containing non-zero vorticity. Moment per unit length

has the form

p d
M -- f (x2 + y2 ) (w^ z) dA (2.15)

2 2dtJ
A

directed along the z-axis. Those are reactions exerted on the aircraft

by the fluid.

Page 10

'4



Poseidon Research Report No. 81

The corresponding results in three dimensions are as follows:

F . . x x wdV ; (2.16)
2 dt f

V

M f x x (x xw) dV (2.17)
3 dt

V

Equations (2.14), (2.15) or (2.16), (2.17) allow us to evaluate forces

and moments from vorticity without the intervention of pressure.

Pe

:-A Page 11
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b. Applications in Two Dimensions

Figure 2.1 shows a typical situation where we might want to apply

the theorems of part (a) in two dimensions. A thin airfoil starts from

rest, shedding vorticity from its trailing edge and possibly from its

leading edge. The airfoil can be represented as a sheet of bound

vorticity,

wb(x, y, t) - Y(s, t) 6(n) , (2.18)

where s and n are coordinates parallel and normal to the airfoil

respectively, 6(n) is the delta function expressing the concentration

of the bound vortex sheet, and Y(s, t) is the velocity jump from the

bottom to the top of the airfoil:

Y = u2 - u (2.19)

According to the Kelvin circulation theorem, the net vorticity over

the entire plane remains zero for all time if the flow starts from rest:

r f (wb + wf) dA = 0 . (2.20)

A

Equation (2.20) is an important constraint on the assignment of bound

vorticity to represent the airfoil. The drag and lift on the airfoil

follow fr a (2.14):

d
D P- Y(wb + wf) dA (2.21)

dtf

A

L = d- fx(wb + wf) dA . (2.22)
dt Pge1

- t Page 12
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If the airfoil eventually stops shedding vorticity, then the free

vorticity wf wraps into a starting vortex with constant circulation

and a centroid fixed in space, i.e.

- f wf dA --- 0 (2.23)
dtf

A

The bound vorticity becomes steady in coordinates (X x + Vt, y)

moving leftward with the airfoil at its velocity V. Thus

D --- f- ywb(X, y) dXdy = 0, (2.24)
dt

and

d

L -p- //(X - Vt) Wb(X, y) dXdy
dt /

- V fwb dA = pVb , (2.25)

A

where rb is the circulation around the airfoil defined in the clock-

wise sense familiar in aerodynamics. Equation (2.15) is D'Alembert's

paradox of zero drag in steady flow, and (2.16) is the Kutta-Joukowski

theorem for lift. Those results should help build confidence in (2.14)

as the general force law for non-steady two-dimensional flow.

A key assumption in our derivation of the Kutta-Joukowski theorem

was that vortex shedding ceases after some time, so the flow becomes

S- Page 14
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steady in airfoil-fixed coordinates. Violation of that assumption is

one of the defining characteristics of post-stall aerodynamics.

One way vortex shedding can continue indefinitely is for shedding

to occur at both the loading and trailing edges of the airfoil. As long

as vorticity shed from the leading edge has sign opposite that shed from

the trailing edge, shedding can continue without violating the vorticity

conservation theorem (2.20). As the two vortex sheets lengthen, they

might even assume an appearance of steadiness in the vicinity of the

airfoil.

Helmholtz developed the holegraph method to study such flows around

flat plates, as illustrated in figure 2.2(a) (Lamb 1932). Helmholtz

derived the formula

ir sin a
F = pV2c (2.26)

4 + ir sin a

for force per unit length normal to an infinite flat plate (lamina) of

chord c. We might have hoped that Helmholtz's solutions become

asymptotically valid for post-stall flows at long times after pitch-up.

Such hope is unwarranted, because the free shear layers of Helmholtz

flows are subject to a Kelvin-Helmholtz instability as shown in figure

2.2(b). Steady-state free-streamline theory predicts a zero-velocity

wake with a uniform pressure equal to the ambient pressure far upstream.

Eddies resulting from the instability, however, scavenge the wake and

lower the backpressure on the plate.

Equation (2.26) predicts a drag coefficient of 0.88 for a plate

normal to the flow, whereas the measured value is 1.98 (Hoerner 1965).

The 125 percent increase is attributable to nonsteady vortex suction,

not too surprising in view of the origin of aerodynamic forces evident

in (2.21) and (2.22).

Page 15



Poseidon Research Report No. 81

44

0~

C

(A
4-

0

CKC

-- o

w 0

C

I- 0

(n >-"
o z IA

Pag 16



Poseidon Research R-port No. 81

Vortex suction plays an important role in the lift of delta wings

at large angles of attack. Indeed the flow around a delta wing is a

prototype for post-stall aerodynamics. Figure 2.3 shows a delta wing

inclined at a substantial angle i to the flow. A plane A traverse

to the delta-wing planform moves with the fluid at speed V. The delta

wing intersects the transverse plane as a slit of varying span b(t),

moving downward at a speed V sin a. Vorticity shed from the leading

edge of the delta wing appears as free vorticity in the transverse

plane. If the delta wing is slender, then the flow in the transverse

plane can be treated like the two-dimensional time-dependent flow of
figure 2.1. In particular, the lift per unit length along the delta

wing is given by equation (2.22) evaluated in the fluid-fixed transverse

plane.

There is no fully satisfactory theory for the vortex lift of delta

wings. Vortex-lift calculations rely instead on analogies. Hoerner

(1975) describes an end-plate analogy, whereby the leading-edge vortices

are regarded as acting like end plates, increasing the effective span in

the transverse plane. Polhamus (1971) achieved good correlation with

data on the basis of a ledding-edge suction analogy, where the leading-

edge suction that reduces the drag of an attached flow is rotated 900 to

produce lift normal to the planform. Neither analogy is convincing as a

basis for a venture into post-stall aerodynamics.

A key difficulty with the concept of vortex lift is evident from

equation (2.22): vortex lift arises from the time dependence of free

vorticity in the two-dimensional flow of figure 2.1 or in the transverse

plane of figure 2.3. Steady vortices in such situations exert no net

force on bodies. A satisfactory method for predicting the vortex lift

of delta wings should be among the first products of post-stall

aerodynamics.

9Page 17

I I



Poseidon Research Report No. 81

AW 4925

.. b(t)V

Figure 2.3. Transverse-plane interpretation of flow over a delta wing,
The flow may be steady in wing-fixed coordinates but is
nonsteady in the fluid-fixed transverse plane.
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c. Vortex Shedding

We have assumed so far that the flow is inviscid, though it may

contain "free" vorticity and "bound" vorticity representing the surfaces

of bodies. The distinction between bound and free vorticity is peculiar

to the assumption of inviscid flow and would disappear if we were

willing to deal with viscous diffusion. "Bound" vorticity is simply

vorticity in boundary layers, subject to viscous and inertial dynamics

about equally. "Free" vorticity is vorticity that has escaped far

enough from boundaries to be subject mainly to inertial rather than to

viscous dynamics. The escape process is called vortex shedding, meaning

the transformation of bound into free vorticity.

The reason for maintaining a distinction between bound and free

vorticity is that we hope to analyze post-stall aerodynamics using

inviscid flow equations. This hope, however, requires us to postulate a

rule for transforming bound into free vorticity without explicit

reliance on the Navier-Stokes equations of viscous flow. Such a rule is

unlikely to become available for bodies of general shape, where both the

location and rate of vortex shedding are variable. We therefore confine

attention to salient edges, from which vorticity can be expected to shed

almost all the time.

The search for inviscid shedding rules is a challenge for

computational fluid dynamics. Some authors (e.g. Hitzel and Schmidt

1984) invoke compressibility as a shedding mechanism.* Compressibility

will be of no help to us, because we want to study incompressible flows.

It is far from clear, moreover, that compressible effects can mimic

viscous flow separation.

*As did Rayleigh, Interestingly, shortly before Prandtl's 1905 paper on

the boundary-layer concept.

Page 19
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Another school of thought holds that finite difference schemes by

their very nature adequately simulate the effects of viscosity with
respect to vortex shedding at salient edges (Rizzi and Eriksson 1984).

There is merit to this viewpoint if velocity is one of the advected

quantities. Upwind differencing, in particular, seems almost certain to

project velocity discontinuities (vortex sheets) from a sharp edge into
the computational grid. We have based the two-dimensional computations

presented here on the vorticity equation, however, which sustains zero

vorticity as a solution unless free vorticity is injected deliberately
into the finite-difference grid. We must provide an explicit algorithm

for the the creation of free vorticity.

Our vortex shedding algorithm is based on the fact mentioned above

that bound vorticity is vorticity in boundary layers. A boundary layer

cannot flow around a sharp edge but must separate from it if the

direction of flow is from the material boundary toward free fluid. The

rate of creation of free vorticity is the integrated flux of boundary-

layer vorticity flowing across the edge.

Figure 2.4(a) illustrates the principles of vortex shedding in two

dimensions when the flow is directed away from the body both above and

below an edge. Consider the situation above the edge, and adopt local

coordinates (x, y) such that x is parallel to the upper surface and

y is normal to it. Vorticity can be written everywhere as

W = av/ x - au/3y (2.27)

In the boundary layer, v is small and x-derivatives are small, so on

both counts vorticity can be approximated as

W - au/ay • (2.28)

Page 20
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The net vorticity flux across the edge in the upper boundary layer is

J (u-uo ) w dy (2.29)

0

where 6 is the depth of the boundary layer, and uo  accounts for the

possibility that the upper surface of the body is moving at a speed uo

parallel to itself. Adopting the boundary-layer approximation (2.28)

for w 'and integrating through the boundary layer, we obtain

6 au (Ul-U) 2

- (u-uo)- dy - (2.30)
0ay 2
0

as the expression for net vorticity flux consistent with thin boundary

layers. Here uI  is the value of u at the top of the boundary layer,

i.e. the surface slip velocity of inviscid flow theory, while uo  is

the value of u at the boundary consistent with the actual no-slip

boundary condition.

Though (2.30) is based on boundary-layer theory, the formula

contains no explicit reference to viscosity. This supports the hope

that post-stall aerodynamics can be treated by inviscid flow methods as

long as the shedding rule correctly embodies the boundary-layer concept.

Similar reasoning about the underside of the surface leads to the

total vorticity flux expressed in figure 2.4(a). Notice that

(u2 - uo) 2  (u, - uo) 2  
1ul - u2\

-_______ - u  (u2 - ul ) (2.31)
2 2 2

( Page 21
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AW4937

(a)

--

VORTICITY FLUX W2 - O2 u- )2
2 2

Figure 2.4. Transformation of bound into free vorticity.
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i.e. the net vorticity flux equals the strength y of the vortex sheet

at the edge times the free-stream velocity relative to the edge averaged

above and below the lifting surface.

The situation in figure 2.4(a) is not the only possibility. The

free-stream velocity relative to the edge might be directed inward from

the edge above the surface, below the surface, or both. Figure 2.4(b)

illustrates the consequences of an inward-directed velocity above the

surface. No boundary-layer vorticity sheds from the upper surface, and

only the first term on the left of (2.31) contributes to a vorticity

flux. The simple interpretation of vorticity transformation afforded by

the right of (2.31) is lost, but the phenomenology is clear.

Our vortex shedding rule must specify not only how much free

vorticity is created, but also where it is place in the computational

grid. Figure 2.5 shows how the placement is effected in the code

described in later sections. Free vorticity is injected into the

nearest grid cell lying entirely downwind of the surface from which

vorticity is being shed.

There is, of couse, a certain arbitrariness in this prescription.

We trust that the vortex shedding process is self-equilibrating, such

that shed vorticity erases singularities near edges and proceeds

independently of fine details near the edges. Viscous flow analyses or

comparison with experiments will be needed to validate that trust.

Pe
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......... . ......

u4

Figure 2.5. Means for deciding where free vorticity is placed in
computational grid.

P
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3. Numerical Methods for Two-dimensional, Unsteady, Separated Flow

a. Introduction

Methods for numerical modeling of lift-generated vortex flows can

be roughly divided into those methods that employ discrete elements for

free vorticity, as, for example, Geising (1968), and Hoeijmaker and

Vaatstra (1983) and those that represent free vorticity as a continuous

field, as, for example, Rizzi and Eriksson (1984). We have chosen to

represent vorticity as a continuous field largely because we had much

greater confidence in the stability, accuracy, and physical

reasonableness of solutions produced by Euler solvers than in those

produced by discrete element methods.

Given the choice of a continuous field representation for free

vorticity, a complete predictive code for two-dimensional, unsteady,

separated flow will have three ingredients:

1. A means for representing the effect of a solid obstacle on the

flow velocity,

2. A means for shedding vorticity from the body into the free

vorticity field, and

3. A means for advecting the free vorticity.

The third ingredient can be, and for our work is, a garden-variety Euler

solver. The first and third ingredients may be combined in a code that

employs body-fitted coordinates, but, as we shall see, it is possible to

build a code that models arbitrary bodies without the complexities of

body fitted coordinates. The third ingredient being the foundation upon

which the whole is built, we proceed with a brief description of the

Euler solver. Pae2
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b. Advection of Free Vorticity

We have taken, as the starting point for our work, the Poseidon

Hydro code, developed originally in 1976 for the simulation of two

dimensional vortex flows in stratified fluid. The code has been exten-

sively exercised, validated, and refined under a variety of programs for

DARPA and for the U. S. Navy, but the only unclassified description of

the code and its applications is given by St. Cyr (1980). The code has,

over the years, acquired many special features directed toward the

programs for which it was exercised. Our first step under the current

program was to gather only the essential nucleus of this software into

an entirely new code. We used an established test case (a vortex pair

in unstratified, inviscid, incompressible fluid) to verify that the
"new" code reproduced exactly the unstratified, inviscid dynamics of the

Hydro code. This done, we had a code which had all the advantages of

many years of testing behind it, but without the breadboard additions

that old codes inevitably acquire.

The Hydro code, and its descendant, LIFTER, are formulated in terms

of vorticity and streamfunction. This formulation has many nice

features for two dimensional flow and is by far the most popular formu-

lation for two-dimensional incompressible flow codes. A code formulated

in terms of vorticity and streamfunction has just two essential ingre-

dients: a scheme for transporting vorticity, and a scheme for computing

the streamfunction given the vorticity.

The advective transport scheme is a derivative of the original

SHASTA scheme of Boris and Book (1973). SHASTA is monotonic for time

steps such that the local Courant nunber is always less than 0.5. That

is, transport never produces new local extrema in transported field

quantities. Monotonicity is, in fact, the key design requirement for a

whole class of schemes which have come to be called flux-corrected

transport schemes, of which SHASTA is an example. SHASTA is as close to
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being second order accurate in space as it is possible to be without

sacrificing monotonicity and exhibits exceptionally small residual

numerical diffusion. Most schemes that are formally second order

accurate and stable are substantially more diffusive than SHASTA. The

algorithm that is implemented in LIFTER differs from the original SHASTA

only in that a slightly more accurate flux correction term is employed

in LIFTER. Time differencing is done using a second order Runge-Kutta

(predictor-corrector) scheme.

The streamfunction is computed from vorticity by solving a Poisson

equation:

72 : w

Two issues must be dealt with in solving this equation: representation

of an infinite domain on a finite grid and an efficient way of solving

the difference equations. If all of the voriticity is captured within

the computational domain, an infinite domain may be represented by

computing the value of the streamfunction on the boundary of the

computational domain using a discrete form of the Biot-Savart integral

for the streamfunction, and then solving the Poisson equation subject to

the computed Dirichlet boundary condition. This reasonable strategy was

employed in the Hydro Code as described by St. Cyr (1980). We have

subsequently adopted the approach of solving the Poisson Problem on a

very large grid using fast Fourier transforms. Despite the fact that

the computational domain must be substantially enlarged for this latter

strategy, it is significantly faster than the original . The speed

advantage arises because the operations count for the Biot-Savart

integral is O(N3 ) while the operations count for the Fast Fourier

Transform is O(N in N). Furthermore, the Block Cyclic Reduction

algorithm formerly used, while having and operations count that is O(N

In N), involves tridiagonal sweeps that do not vectorize on the CRAY.
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c. Representation of Wing Sections by Bound Vorticity

The velocity field computed by the free vorticity code is different

from the actual velocity field around a solid body by a flow which is

everywhere irrotational except within the solid body. For our purposes,

the solid body will always be a one-dimensional curve within the c-mpu-

tational domain. In order to compute the actual velocity field, we must

obtain a flow that is irrotational everywhere but along the curve and

that cancels along the curve the normal velocity due to free vorticity.

There are a variety of techniques available to compute the required

velocity field, but by far the most attractive are the so-called panel

methods. These methods compute the required velocity field as if it

resulted from a distribution of flow field singularities distributed

along the body. The great power of these methods derives from the fact

that the body is represented by polygonal elements, permitting the

representation of nearly arbitrary geometries.

Of the many possible choices for the flow field singularities, by

far the most natural for the problem at hand is a sheet of vorticity.

Vortex sheet panel codes, as in Raj and Gray (1978), are a standard

technique for the aerodynamics of thin airfoils.

Figure 3-1 illustrates most of the essential features of the panel

code that has been embedded into lifer. The wing is represented as

series of N panels of arbitrary length and orientation, each panel being

a sheet of vorticity of constant, unknown strength. Panel a induces a

normal velocity at a chosen control point on panel B; the value of this

velocity for unit vorticity per unit length on panel t is the

influence coefficient CaB. The sum of all of the induced velocities at

panel a must exactly cancel the normal velocity at panel a due to

the free vorticity. We thus have N equations for the N unknown

panel vortex strengths.
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The matrix of influence coefficients computed by the preceding

prescription will be numerically ill-conditioned, as a consequence of

being nearly singular. This near singularity is a consequence of the

exact singularity of the continuum integral equation being approximated.

The singularity of the integral equation is reflection of the well-known

fact that the flow around an airfoil can have an arbitrary net

circulation. This indeterminacy is resolved in conventional

aerodynamics by insisting that a stagnation point coincide with the

sharp trailing edge of an airfoil. This requirement is commonly known

as the Kutta condition.

If the flow around the airfoil is permitted to separate, the

arguments that lead to the Kutta condition fall apart. From the

absolutely fundamental Kelvin circulation theorem, we know that the

total circulation of the flow must be preserved. If we start with an

airfoil at rest, then the indeterminacy is resolved by insisting the

totdl circulation of the flow be zero. This condition, which we have

chosen to call the Kelvin condition, is used to replace one of the rows

in the matrix of influence coefficients.

All that has been said so far is reasonable and even obvious, but

some details have been glossed over. For example, the most obvious

choice of control points, the center of each panel, produces an

oscillating distribution of bound vorticity on a flat plate in a uniform

free stream. Moving the control point to the quarter chord of each

panel results in a vorticity distribution that more nearly approximates

the know solution to the continuum equations. This naturally begs the

question as to why the quarter chord and not the three quarter chord?

Or, to put it another way, what is the difference between the quarter

chord and the three quarter chord for a flat plate at 90 degrees angle

of attack? Similarly, which of the equations is to be replaced by the

Kelvin condition?
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We have alleviated the arbitrariness of the choice, at least to

some extent, by solving for the bound vorticity with one arbitrary

choice of control points and for its mirror image, and then averaging

the results. The Kelvin condition in each case replaces a control point

equation at one end of the panel. While the choices are still

arbitrary, the procedure at least preserves any symmetries the problem

may have had before descretization.

A further detail we must deal with is that once we have the

singularity distribution, we must compute the velocity field due to the

singularity distribution at every point in the computational grid.

Calculating this velocity field from a Biot-Savart integral is imprac-
tical, not only because of the operation count, but also because an

impracticably large number of influence coefficients would have to be

stored. The most economical way to generate a velocity field from the
bound vorticity is to assign the bound vorticity to grid points and

solve a Poisson equation as for the streamfunction due to free vorti-
city. This seemingly crude procedure seems to yield remarkably good
results as will be evident from the streamfunction plots in Chapter 4.

d. Conversion of Bound Vorticity into Free Vorticity

In Chapter Two, we discussed at length the physics of our model for

vorticity shedding. Here it remains only to report on the detail-s of

the method by which this shedding model is implemented. The mean velo-

city at the wingtip is computed by interpolating the velocity field on

the grid, and subtracting the velocity of the wingtip, if the wingtip is

not stationary in the grid. The vorticity on the end panel is presumed

not to contribute to the mean velocity at the wingtip. The mean tangent

velocity is computed by dotting the mean velocity with an outward facing

unit tangent vector. The tangent velocity on one side of the wing is

taken to be the mean tangent velocity plus y/2 and the tangent

velocity on the other side of the wing is taken to be the mean tangent
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velocity minus Y/2, where Y is the bound vorticity at the wingtip.

Given the velocity on either side of the wing, it is a straightforward

matter to compute the rate of shedding from the formulas in figure 2.4.

Once the rate of shedding has been computed, the vorticity is added

to the free vorticity in the grid. In order to ensure that the newly

freed vorticity is not trapped at the wingtip, the vorticity is added to

a control volume that does not contain the wingtip.

This description makes clear a possible weak point in the model.

The rate of vorticity shedding is proportional to the value of the

vorticity on the last panel. For an impulsively started flat plate, the

vorticity at the end of Zhe plate is infinite, and yet the rate of

vorticity shedding computed by our model is dependent upon the

artificially finite value computed as a result of the discretization

process. The only reason to believe that such an arbitrary procedure

could yield correct results is that the process is self-correcting.

That is, one effect of shedding vorticity is to relieve the singularity

at the wingtip. If too small an amount of vorticity is shed, the rate

of shedding at the next time step will be larger. If too large an

amount of vorticity, is shed, the rate of shedding will be smaller.

This kind of feedback mechanism suggests the existence of stability

criteria relating the grid cell, wing panel, and time step size. We

have not yet tested the possible dependence of gross predictions, such

as aerodynamic coefficients, on the wing panelization.
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4. Computational Results for Two-dimensional, Unsteady,

Separated Flow

a. Impulsively Started Flat Plate at 90 degrees Angle of Attack

The first problem for which we exercised LIFTER was a flat plate at

90 degrees angle of attack. The chosen grid was 40 by 40 cells, and the

flat plate was represented by 22 panels of equal length.

Figure 4.1 presents the normal force coefficient history as

predicted by LIFTER compared with the measured average value (Hoerner,

1975, p. 21-1) and with the prediction of the Helmholtz model (op.

cit.). There are no time dependent measurements of the force history on

a flat plate that are known to us. Beyond a large starting transient in

the normal force, there is no evidence of oscillatory behavior in the

force coefficient that would be indicative of the formation of a vortex

street. In fact, for the time simulated, the force coefficient

decreases monotonically with time, as would be indicative of the

formation of a stable recirculation cell.

Figure 4.2 presents a series of comparisons of computed streamlines

with aluminum particle streakline photographs and Taneda and Honji 1971.

We can expect the comparison between instantaneous streamlines and

streaklines to be reasonable if the exposure time of the photograph is

short compared to a characteristic time for the unsteadiness of the

flow. Taneda and Honji do not state the exposure time for their

photographs, although we may presumably infer that it is less than the

spacing of their photographs in time, typically 0.5 B/U. The blockage

factor, that is the width of the plate over that width of the test

channel, was less than 10%.

The qualitative behavior of the computed streamlines compares well

with the streakline photographs over the entire series of comparions,
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3

- -_ Taneda & Honji (1971)

LIFTER, Strouhal No. 0

- LIFTER, Strouhal No. 0.5 #'

S/b

0.1
0.1 0.3 1.0 3 10
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t4

Figure 4.3. Length of recirculation cell from measurement
and from computation.
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but the recirculation cell from the LIFTER simulation grows signifi-
cantly more slowly than the recirculation cell in the streakline photo-
graphs. Figure 4.3 makes a more quantitative comparison. Taneda and

Honji have inferred the relation

s/c = 0.89(Ut/c) 2/3

where s is the length of the recirculation cell and c is the chord

of the plate. Figure 4.3 compares this relation with the length of the

recirculation cell from LIFTER as inferred by taking twice the distance

from the plate of the centroid of the vorticity in half the recircu-
lation cell. The prediction from LIFTER does not follow the simple

power law relationship inferred by Taneda and Honji, but rather grows at

first more quickly and then more slowly than the inferred experimental

relationship. Figure 4.3 also contains results for an oscillating

chord, to be discussed in section C.

Both the photographs and the computed streamlines confirm the

existence of a stable recirculation cell over the entire length of the

LIFTER simulation. For large Reynolds numbers, we infer from figure 10

of Taneda and Honji an inviscid scaling for the critical time:

tcr = 5.3(c/U)

While the determination of this time from streakline photographs obvi-

ously involves some subjective judgment, we may expect that the LIFTER

computation was simply too short to exhibit breakdown of the recircu-
lation cell and consequent rebounding of the force coefficient from its

monotonic decline. It also is not clear, from the paper of Taneda and

Honji, whether the initial breakup of the recirculation cell is a two or

three dimensional phenomenon.
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It would have, of course, been desirable to have a longer

simulation, but, because of the Kelvin condition and because of the

moment calculation, both of which involve integration over the entire

field of vorticity, we are currently forced to stop our simulations when

significant vorticity leaks from the edge of the computational domain.

We will discuss the economics of these computations further in Chapter

Five.

Figure 4.4 presents plots of the bound vorticity as computed by

LIFTER at various times. Of these, the only one that is readily

interpretable is at t = 0, where the exact solution is known for the

bound vorticity on a flat plate in uniform flow. This result is derived

in Appendix B. The distribution of bound vorticity computed by LIFTER

agrees well with the theoretical prediction for all but the last two

panels, where the assumed constant distribution of vorticity is a poor

approximation to the square root singularity. It can also be seen from

figure 4.4 that the separated vortex flow almost immediately reduces the

bound vorticity to a small fraction of its initial value. The residual

concentration of bound vorticity at the end of the wing is of some

interest. We will speculate as to the meaning of this phenomenon in the

last section of this chapter.

The conclusions we may draw from this first comparison of the

predictions of LIFTER with experimental data are not as strong as we

would like. The qualititive behavior of the code predictions is

certainly reasonable. The quantitative behavior of the recirculation

cell is at least not grossly inconsistent with the results of

measurements. We would most like to make a comparison between the

measured and predicted average normal force coefficients, but this

comparison will require a much longer computation than the one presented

here.
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Figure 4.4. Impulsively started flat plate at 900 angle of attack.
CChordwise distribution of bound vorticity, at various times.
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b. Impulsively Started Flat Plate at 45 Degrees Angle of Attack

Despite the fundamental importance of the flat plate at 90 degrees

angle of attack to an understanding of post-stall aerodynamics, the

problem is peculiar because of its symmetry. In order for a vortex

street to appear, it is necessary for some symmetry-breaking instability

to develop. For a flat plate at any other angle of attack, asymmetric

shedding will begin immediately, so that the formation of a long-lived

recirculation cell is unlikely.

Figure 4.5 presents a sequence of vorticity maps from our next

exercise for LIFTER, a flat plate at 45 degrees angle of attack. It

seems a shame to belabor the elegance of the simple physics in this

figure with technical comment. It must be noted that the aspect ratio

of the plots is not quite right; the dots along the border of the plots

should be equally spaced, but they are not.

Figure 4.6 presents another striking plot from the same simulation,

this time of the absolute value of vorticity, and this time with the

aspect ratio correctly represented. Next to it is an aluminum flake

flow visualization of the same problem, reproduced from Cantwell (1981).

Although the photograph is obviously in a much later state of

development, the similarity of flow patterns is gratifying. The

shedding frequency in the numerical simulation is obviously very close

to the shedding frequency of the real flow.

Figure 4.7 presents the force coefficient history from this

simulation, and here we begin to see the kind of effects we expect from

the formation of a vortex street. Comparison of the force coefficient

history with the flow maps shows that the shedding process has completed

just slightly more than one complete cycle at the end of the simulation

where the normal force coefficient is rising.

Pe
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LIFTER
, ... ABSOLUTE VALUE OF VORTICITY

Ut/c 5.90

ALUMINUM FLAKE FLOW VISUALIZATION

(Cantwell, 1981)

Figure 4.6. Flat plate at 450 angle of attack. Comparison of computed
distribution of absolute value of vorticity with aluminum
flake flow visualization.
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Figure 4.7. Impulsively started flat plate at 450 angle of attack:
force coefficient histories.
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Figure 4.7 also shows some unexpected, and -- perhaps --

disquieting physics in the form of a significant tangent force! The

calculation having been done with an ostensibly inviscid code, the

circumspect numerical modeler would perhaps have done better to have

left this curve off the plot, but there it is, and it deserves some

explanation. First, of course, is the possibility that this prediction

is simply the result of some modeling inaccuracy. After all, despite

the intuitively obvious fact that the tangent force on a flat plate in

inviscid flow should be zero, that this should be so in the numerical

simulation requires the vanishing of a time derivative of a particular

moment of vorticity, with no obvious symmetry in the problem co enforce

this condition.

It is a prediction of ideal fluid mechanics that there is no net

force whatever on a closed body in a uniform freestream. In order to

explain lift and drag and in order to predict them with LIFTER, we must
introduce viscous mechanisms, by whatever circuitous route. In

classical aerodynamics, the magical device is the Kutta condition, in

LIFTER, it is the shedding mechanism. The theorems used to compute

forces in LIFTER remain valid if viscosity is included, and LIFTER

contains mechanisms that are manifestly viscous. There is, then, no

good reason to dismiss the predicted tangent force as either physically

or mathematically incorrect.

The distribution of bound vorticity, presented in figure 4.8, shows

no new surprises. The vorticity at the trailing edge bounces up and

down with the cyclic shedding process. As in the plate at 90 degrees

angle of attack, there remains a large concentration of bound vorticity

at the leading edge throughout the simulation.
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c. Impulsively Started Flat Plate with Oscillating Cross Section

at 90 Degrees Angle of Attack

The first two problems in this section are important from the point

of view of understanding and validating the basic model. The underlying

motivation for the current program is the desire to achieve sufficient

active control of the shedding process as to have significant control

over the net forces on a stalled aerodynamic shape. We felt that it was

desirable to get results as early as possible that would indicate the

feasibility of controlling the aerodynamics through manipulation of the

salient edges, whether through oscillating jet flaps or oscillating

mechanical flaps.

With this end in mind, we have performed two simulations of flat

panels with oscillating chord at ninety degrees angle of attack. The

Strouhal number (the ratio of the oscillation frequency to the convec-

tive time scale based on chord) was chosen to be two for one of the runs

and 0.5 for the other. The amplitude of oscillation in both cases was

100 of the chord (that is, the maximum total chord is 1.1 times the

minimum total chord).

The results of these simulations are presented in figures 4.9-4.10.

The normal force coefficient history for the Strouhal number 2 case,

presented in figure 4.10 is in striking contrast to the Strouhal number

0 case previously presented in figure 4.1. Not only the peak normal

force coefficient, but also the mean normal force coefficient is signif-

icantly enhanced by the oscillating chord. The normal force coefficient

history for the Strouhal number one half case also shows augmented mean

lift, but the augmentation is considerably less striking than for the

Strouhal number 2 case.
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Referring back to figure 4.3, we also see that the recirculation

cell for the plate with oscillating chord grows faster than for the

plate with fixed chord.

We would expect, even for an unseparated flow, a significant effect

from oscillating the chord, if only from acceleration and deceleration

of the changing virtual mass associated with the changing chord. The

virtual mass associated with a flat plate may be readily inferred from

Batchelor (1967) p. 431, equation (6.6.19) to be 7rpc 2 / 4 . The force

associated with the oscillation of the virtual mass is given by

31
- (irpc 2U/4) = - pUir2fc2(2A sin(21rft)
3t 2

+ 2A2 cos(27rft) sin(27rft)

The normal force coefficient associated with the virtual mass is then

given, for small amplitude oscillations, by

27r2 (fc/U) A sin(27rft) = 272 Str A sin (2irft)

which, for a Strouhal number of two yields an envelope amplitude of

roughly 4 with an amplitude of 0.1, and an envelope amplitude of roughly

2 for the same amplitude and a Strouhal number of 0.5. These numbers

are not necessarily valid when the flow is separated, as in our

calculations, but they agree reasonably well with the envelope of the

oscillating component of the computed normal force coefficient.

There appears to be significant (greater than fifty percent)

augmentation of the mean normal force coefficients for the cases with

the oscillating chord as compared to the plate with fixed chord. The

mean for all three cases has dropped at a non-dimensional time of 6

below the measured average normal force coefficient for a flat plate at

90 degrees angle of attack.
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d. Conclusions from Two-Dimensional Simulations

Having presented our results, let us now recapitulate and examine

the evidence. Two questions should be answered:

1. Is the model reasonable in the sense that it adequately

predicts reality?

2. What have we learned about separated flow?

In answering the first question, we must admit that the evidence at

our disposal is not entirely satisfactory in that the runs are shorter

than those we would like to be able to examine. Only in one case, the

flat plate at 45 degrees angle of attack, do we see the kind of periodic

shedding that we expect is responsible for the failure of potential flow

and Helmholtz models to predict the measured drag coefficient of a flat
plate. Even in that case, we have barely one full cycle of the periodic

process to examine, a situation that makes it difficult to draw

conclusions about the mean behavior of the system. Nevertheless, it is

easy to believe that the normal force coefficient in figure 4.7 is

oscillating about the correct mean value.

The qualitative agreement of the computed wake of the flat plate at

forty five degrees angle of attack is certainly evidence that the model
not only predicts the periodic shedding process, but does so correctly.

The only time dependent data available to us are the flow

visualization experiments of Toneda and Honji. For the flat plate at
normal incidence, the persistence of a stable recirculation cell is

evident in the flow visualizations of Toneda and Honji, but, based on
inviscid scaling, the computed recirculation cell grows more slowly

longer than in the experiments.
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Some features of the predictions are not necessarily contradicted

by observation, but certainly run contrary to expectations. The

prediction of significant tangent force coefficient for the flat plate

at forty five degrees angle of attack must be included in this category,

as must be the not unrelated phenomenon of a persistent leading edge

singularity for this calculation.

We have learned from this series of simulations that a model of

vortex shedding that ignores the details of the boundary layer is

capable of making reasonable predictions of the shedding process.

Unlike some other models, our model does not predict instantaneous

relief of edge singularities, but rather that reversed flow persists for

some time.

We have also learned that periodic forcing, such as might be

induced by jet flaps, enhances both the rate of shedding and the mean

lift coefficient.

IIl
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5. Directions for Further Work in Two Dimensions

a. Code Modifications Aimed at Economics

We have been limited, in our first series of simulations, by the

need to capturp the entire field of shed vorticity. This need has

arisen both because of the Kelvin condition, and because of our use of

the vorticity theorems of Chapter I for the computation of aerodynamic

forces. We can easily keep track of vorticity leaving the computational

domain for purposes of enforcing the Kelvin condition. We cannot keep

track of the x and y moments of vorticity leaving the computational

domain without further assumptions, such as assuming that the vorticity

simply convects with the free stream velocity. Such modifications will

be worthwhile only if we wish to make very long simulations.

The cost of running the LIFTER is currently dominated by the cost

of solving the linear system of equations for bound vorticity. The

solver currently in use for this purpose uses Gauss elimination with

pivoting. Simply switching to a more highly optimized solver will be

the most cost effective step we can make in obtaining longer urns at an

acceptable cost.

b. Calculations Aimed at Further Understanding of the

Computational Model

We have so far been unable, because of costs, to check the

dependency of results on wing panelization. We shall surely wish to

perform such an experiment when more efficient software for computing

bound vorticity is in place.

We may also wish to check the dependency of results on the details

of the vortex shedding model by ignoring voriticty swept off the lee
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side when the flow at the edge is outward on both the windward and

leeward side of the wing.

c. Calculations Aimed at Further Understanding of the Physics

and of the Model

We would of course, like to see the model duplicate average drag

coefficients for flat plates, and to do this, we expect to need much

longer runs than those presented in Chapter 4. Toneda and Honji mention

that the breakdown of the recirculation cell is an unsymmetrical

process. Such an asymmetry must correspond to an instability of some

kind. Whether, when, and how such an instability might arise in a two-

dimensional numerical experiment present interesting question. The free

vortex sheet may also exhibit a symmetrical instability.

We shall, of course, want to simulate a slender delta wing at angle

of attack. These simulations will provide us with a further opportunity

to compare the model with measurements.

The ultimate goal, of course, is to obtain predictions that are

relevant to active vortex control. We have made tentative steps in this

direction with the runs reported in Chapter 4, but we shall surely want

more extensive results in this area.
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6. Numerical Methods for Three Dimensional Unsteady Flow

The two dimensional work presented so far is, more than anything

else, preliminary work aimed at implementing a three dimensional model.

The understanding we have achieved as a result of the two dimensional

work reported here has carried us a considerable distance in that

direction.

The ingredients for a three dimensional model are much the same as

the ingredients for a two dimensional model: an Euler solver, a means

for enforcing zero normal velocity on embedded surfaces, and a means for

shedding vorticity.

Euler solvers for incompressible, three-dimensional flow are

considerably less common than for incompressible, two-dimensional flow.

Poseidon Research has recently developed one such code, and this code

appears to be well suited as a starting point for a three-dimensional

version of LIFTER.

Like LIFTER, Burner uses flux-corrected transport for the advection

step. Unlike LIFTER, Burner is formulated with three components of

velocity as the fundamental field quantities. The fact that Burner does

not explicitly conserve vorticity works to our advantage. In partic-

ular, flows simulated by Burner will separate without the inclusion of
an explicit shedding mechanism. Figure 6.1 presents a field of flow

vectors obtained by simulating a square jet in a square channel with a

square obstruction midway down the channel. The square obstruction is

simulated by adding impulsive forces to the model system. The flow

separates both at the inlet and at the square obstruction.

We would simulate the presence of embedded surfaces for aerodynamic

calculations in much the same way. We would calculate impulsive forces

that cancel the normal velocity at the enedded surface. Just as for
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bound vorticity, the effect of the impulsive forces is non-local, and

calculation of these forces requires the solution of a set of linear

equations. Application of the local effect of the impulses will produce

a velocity field that is neither incompressible nor zero at the embedded

surface. The solution is completed by solving a Poisson equation for a

velocity potential whose gradient, when added to the velocity field,

will result in a velocity field with all of the desired characteristics.

It is a pleasant circumstance that most of this technology is

already in place, and that the only new software required will be

software to solve for the panel impulses.

Although we are confident that embedded surfaces will shed

vorticity, it is by no means clear that they will do so correctly.

Exploring the actual mechanism by which the code produces shed

vorticity, and its correctness, will constitute a significant part of

the development effort.

4
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Appendix A

Derivations of Force and Moment Theorems

The two-dimensional force and moment equations, (2.14) and (2.15),

are simple enough to derive in Cartesian component notation. The

corresponding derivations in three dimensions require the use of index

notation.

a. Two Dimensions

In two dimensions, the vorticity equation (2.11) becomes

w agy agx
- + u- VW = , (Al)
at ax aY

since the "vortex stretching" term w V Vu is zero because of the

absence of gradients in the z-direction.

Multiply by x and integrate over x and y:

Sf xwdA+f(
fdxu + xv- dA

dt Jy
A A

agy agx
Sg- x-) dA

A

The r.h.s. can be rewritten and integrated to the (distant) boundary

of A:
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J (xgy) gy - - (xgx ) dAf lx ay

A

=- fgy dA + f (xgyix - Xoxy) dC

A C

Where n is the unit outward normal from the boundary C. The second

term on the left can be reworked in a similar fashion:

- (xuw) - xw- - uW - - (xvw) - xW- dA
f ax ;x ay

A

- /uw dA + / (xuwnix - xvwfiy) dC

A C

where use has been made of the continuity equation au/Dx + av/Dy = 0.

The perimeter C can be made large enough so that g and w are

both zero on it ( w is only avected by the fluid; it does not propagate

instantaneously like a potential or even fast like a sound wave). The

line integrals are then zero, and we have

(d

- y dA - fxwdA fuwdA
jf dt f f
A A A
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But w = v/;x - u/y, so the second term on the r.h.s. becomes

(uv) - v-- u- dAI x ;x yj
A

;v
- (uv + v- -u- dA

3x Dy
A

f ]uvfix + (v2 - u2 ) Ry/2 dC

C

Since u and v fall to zero at least as fact as r-1 , the contour

integral is again zero.

We finally have

- gy dA w- xwdA
dtf

A A

from which

Fy - gy dA - xwdA

Pf dt f'
A A
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This proves the y-component of (2.14). Proof of the x-component

involves multiplying (Al) by y and proceeding as before.

The definition of moment per unit leng,:h in two-dimensional flow

follows from (2.6):

Mez - (xfy - Yfx)Lz dA (A2)

A

To prove the moment relation (2.15), we multiply (Al) by r 2  x 2 + y 2

and proceed as before:

- r2w dA + f(r 2u- + r2v ) dA
Idt x 3

A A

J (r 2  - r ) dA (A3)
( x y

A

Dropping contour integrads as they come, we find for the r.h.s. that

1 f[(r2gy) - 2xgy - -(r 2 gx ) - 2yg x dA

A

= -2 f(xgy - ygx) dA (A4)

A
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The second term on the left becomes

f D /3u DU] -(r 2uw) + -(r 2vw) - r2w1\- + -9 - 2xuw -2yvw d
9)' 3yx 3y

A

- 2 f (Xuw+ yvw) dA

A

r @v 3u Dv 3 A
-- 2 j xu- - )xj- + 'v- - yV- d

A

-- 2 f I(xuv) - uv - xv- - X
3x 3x 9y 2

A

-- (yuv) + uv -yu- + -- ) d

3y

- 2 ,jxv- + yu - dA
f ay DX

A

@v2  2
- 2 - X- + (y-J dA

f/ay 2 ax 21

A

=0 (A5)
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We have repeatedly made use of the assumption that quanities like xv2,

yu2, etc. fall to zero factor than r-1 . That is so by virtue of (2.20),

which implies that velocity falls as r-2  far from the region occupied

by vorticity.

Combining (A2)-(A5), we obtain

M r2w dA
2 dt

A

which is the same as (2.15).

b. Three Dimensions

The proofs of the two-dimensional force and moment theorems are

fairly complicated. Matters get out of hand in three dimensions unless

index notation is used. With index notation, the ith components of

velocity and vorticity are represented as ui and wi respectively.

The curl involves the permutation symbol Eijk, so that

uk
wi = Eijk - (A6)

Dxj

Eijk is +1 if ijk are an even permutation of 123, -1 if ijk are

an odd permutation of 123, and zero if two of the indices are the same.

Another symbol of great utility is the Kronecker delta dij, which is

+1 if i and j are equal and zero if not. The continuity equation

can thus be written as

ui
6ij -= 0 (A7)

axj
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Whenever indices are repeated, as in (A6) and (A7), they are summed over

1, 2, 3 (the Einstein summation convention).

E and 6 are connected by the identity

eijk Eimn = 6jm 6kn - 6 km 6in , (A8)

used frequently in the following proofs. Often we must rearrange the

indices of E to apply (A8). From the definition of e,

Fikj = - £ijk , Ckij = eijk . (A9)

Odd and even permatations of E's indices, exemplified by (A6), are

used in the following without comment.

In index notation, the three-dimensional force theorem (2.14)

becomes

Fi P fgi dV

V

P d
2 dt Eijk xj wk dV , (AIO)

V

where the first equality follows from the definition (2.5) of F (with

f p9), and the second is to be proved.

The proof is based on the vorticity equation (2.11), which becomes

;wk Dwk Uk ;gn
- + um- -m- Wmkmn-
3t ;Xm aXm ;Xm
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in index notation. Take the cross-product with x:

9wk / wk 3Uk\ agn
xijk xj + Eijk Xj Umx - Wm m  : ijk £kmn Xm- (All)

Apply the e-6 identity to the r.h.s.:

gn ;gn

kij Fkmn xj - : (6im 6jn - 6jn 6in)Xj -3xm  Xm

gj gi

= xj - - xj -
xi  xj

33
- (xjgj) - gj6ji (xjgi) + gi6jj

xi  axj

3 a
- (xjgi) - - (xjgi) + 2gi , (A12)

3xi axj

where we have used the facts that 3xj/3xi = 6 ji and 6jj

1 + I + 3. Rework the second term on the l.h.s. in like fashion:
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3Lwk 3Uk
Eijk xj un- Wm-)

= £ijk - (XjUi~k) - Um wk 6jm
kxm

- - (XjwmUk) - um Uk6jm
3xm

Eijk xj (Umik -wmUk) -
2 eijk uj wk (A13)

DXm

Moreover,

;un
£ijk uj k = ijk Ckmn j-

;Xm

Dun
= (6im6jn - 6jm6in) uj-

xm

3uj 3ui  3 ujuj
= uj- - uj- = - - - - (uiuj) (A14)

3xi Dxj 3xi 2 3xj

Gathering (A11)-(A14), integrating over an arbitrarily large volume

V, and eliminating surface integrals involving wi or gi ,we obtain

P
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2 gi dV f- fEijk xj wk dV

V V

-2 f i ui uj Aj dS
2

S

Velocity components ui  fall at least as fast as r- 2  in three
dimensions, so the surface integral vanishes, and we have proved (AlO).

The definition of moment (2.6) and the moment theorem (2.17)
require us to prove that

Eijk xj gk dV = I d fijk xj (Ckmnxmwn) dV (AI5)f 3 dt
V V

The proof is complicated and will only be sketched here. Cross the
vorticity equation twice with x:

an ( awn Dun)

'ijk xj ckmn Xm - + Eijk xj ckmn Xm up - -P p _
at Xp aXp

agq

cijk xj £kmn Xm Enpq - • (A16)
aXp
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Manipulate the r.h.s.:

Eijk xj (Enkm Enpq Xm 3 )

aXp

1gq
= £ijk xj (6kp 6mq - 6mp 6kq) Xm--

aXp

= cijk Xj (xm - Xm-)
axk Xp

= ijk (XjXm9 m ) - xj gm 6km - Xm gm 6k1
DXk

- tXjxragk) + xj gk 6mm + Xm gk 6mj
DXk

: ijk (xjxnmgm) - (xjxmgk)laXk DXm

- Xj gk + 3xj 9k + xj gk{

The second term on the left of (A16) can be written entirely in terms of

divergences. Integrating (A15) over all space, we find that
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d
- f ijk Xj Ekm m xm wn dV

V

= 3 f eijk xj gk dV

V

where the surface integrals vanish provided that wi and gi are

confined to a finite domain, and that XjUmUn falls to zero faster than

r-2 , which is always true. This confirms (A15) and hence (2.17).

P
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Appendix B

Bound Vorticity on a Flat Plate at Angle of Attack

in Potential Flow

Bound vorticity must exactly cancel the normal component of

freestream velocity; that is,

c
Y(x')dx'

U sin a f for 0 < x <cI2i(x-x'
0

Apply the Glauert transformation

C
x' = -(1 -cos e')

2

so that

21
i f Y(6') sin e' de'U sin (a - --

21t cos e' -cos e
0

Use the fact that

cos ne' de' 7r sin ne

fcos e' - cose sin e
0

to guess that
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Y( 6' sin 61 A0 + BCos@,

A0 must be zero to satisfy the circulation theorm. Then

U sin a 13/

Thus

Y =2 U sin a ctn e =U sin _________
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